Finding polynomials to count lattice points; Computer explorations with MuPAD-Combinat

نویسنده

  • Janvier Nzeutchap
چکیده

We are interested in Algebraic Combinatorics, a subject we give an overview, and in Symbolic Computation. In this paper we describe a problem we recently encountered in some experiments we are still carrying on. This problem is about generating polynomials counting lattice points in certain particular types of convex polytopes. The lattice points numbers are interpreted as Kostka numbers and Littlewood-richardson coefficients and they are of great interest in algebraic combinatorics. For some demonstrations, we make use of MuPAD-Combinat, an open-source algebraic combinatorics package for the computer algebra system MuPAD. RÉSUMÉ. Nos travaux se situent dans les domaines de la Combinatoire Algébrique dont nous faisons une brève présentation, et du Calcul Symbolique ou Formel. Dans ce papier, nous présentons un problème posé à la suite de certains calculs que nous avons effectués tout récemment; calculs relatifs à la détermination des polynômes générateurs de nombres de Kostka et de coefficients de Littlewood-Richardson. Le problème en question porte plus généralement sur le degré réel d’un polynôme énumérant les points entiers dans un polytope convexe dilaté par un facteur entier. Nous effectuons quelques démonstrations de calculs à l’aide de MuPAD-Combinat, un package open source pour la combinatoire algébrique en MuPAD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Making Research on Symmetric Functions with MuPAD-Combinat

We report on the 2005 AIM workshop “Generalized Kostka Polynomials“, which gathered 20 researchers in the active area of q, t-analogues of symmetric functions. Our goal is to present a typical use-case of the open source package MuPAD-Combinat in a research environment.

متن کامل

Unranking Algorithms for Combinatorial Structures

We present an implementation of some unlabeled and labeled unranking algorithms for the open-source algebraic combinatorics package MUPAD-COMBINAT of the computer algebra system MUPAD. We have compared our implementation with the previous versions. All our algorithms improve the previous ones with respect to the required CPU time. Moreover, we have also developed unranking algorithms applied to...

متن کامل

Unranking algorithms applied to MUPAD

We present an improvement of the implementation of some unlabeled unranking algorithms of the open-source algebraic combinatorics package MUPAD-COMBINAT for the computer algebra system MUPAD. We compare our implementation with the current one. Moreover, we have also developed unranking algorithms applied to some unlabeled admissible operators that are not still implemented in the package MUPADC...

متن کامل

Symbolic demonstrations in MuPAD-Combinat

This paper reports on a platform integrated to the open source package MuPAD-Combinat dedicated to the computation with rational expressions. Its main feature is the capacity of dealing with expressions whose scalars may belong to various algebraic structures. The paper describes some features of the platform as well as the data structures used in the implementation, details some algorithms and...

متن کامل

Inversion of some series of free quasi-symmetric functions

The algebra of Free Quasi-Symmetric Functions FQSym [5] is a graded algebra of noncommutative polynomials whose bases are parametrized by permutations. Under commutative image, it is mapped onto Gessel’s algebra of quasi-symmetric functions, whence its name. Quasi-symmetric functions generalize symmetric functions in a natural way, and many classical results admit quasi-symmetric extensions or ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006